Strategy for selection of IoT management technology: from SMS to AWS

Leonid Karpenko Ph.D, Sergey Dushin Ph.D Synergy team / Institute of control science of RAS

Engineering & Telecommunication Conference, November 25 – 26, 2020

d)

PROBLEM: WHAT TECHNOLOGY TO USE FOR SPECIFIC IOT PROJECT

MANIFOLD OF IOT APPLICATIONS

MANIFOLD OF IOT TECHNOLOGIES

PROBLEM TO DISCUSS

What will be the optimal:

- data connectivity
- upper level system

for specific (your) IoT project

SERVERLESS CONNECTIVITY: SMS or FIXED IP

SMS is an easiest way to communicate and still suitable for simple projects

DIRECTLY CONNECTED IoT (device <> fixed IP server)

engineering &telecom

PRIVATE HUB CONNECTED IOT

Pros (+):

engineering &telecon

- Hubs can be placed when needed
- no fee (except for use of operator's network) - low OPEX
- **Different HUBs** can be of different types: wired, radio, etc.

Cons (-):

-

- Maintenance is needed
- **High CAPEX** expenses (to build every HUB/BS)
- Slow deployment

OPERATOR' S HUB CONNECTED IOT

Cons (-):

User connection

- Fee for every connected device (high OPEX)
- Possible problems with radio coverage
- Long to _ agree with operator for non-standard cases
- all operator's -HUBs are normally of one type (like LoRA / NBoT)

TRANSPORT LAYER TECHNOLOGIES

Transport layer	Physical layer	Range (free air/wire hop), km	Max. speed (typically), kbps	Transport		Phy. layer	Range, km	Speed kbps
				LoRaW	AN	radio	5	0.2
SMS	radio	1	0.5	NB-Fi (Rus)		radio	10	0.3
Wired Ethernet 100M	wire	0.1	1e5					
Wired Ethernet 1G	wire	0.1	106	SigFox		radio	10	0.05
Wired Ethemet 16	wite	0.1		ZigBee		radio	0.5	30
Wi-Fi (optimized to IoT)	radio	0.03	2e4			wiro	0.5	200
Cell (2G GPRS typ.)	radio	1	50	G3, etc	.)	wire	0.5	200
Cell (3G minimum)	radio	1	200	NB-IoT		radio	1	20
Cell (4G minimum)	radio	1	200	RS485 etc.	CAN,	wire	2	20
Fiber (GPON)	wire	20	1,2e6					
					5n			

12

OT UPPER LEVEL SYSTEMS

READY TO USE SW PRODUCTS

Following types of SW products can be used for IoT:

- SCADA for Industrial automation (OPC, ModBus)
- Network management systems (SNMP, TR-069, CLI)
- Automated meter management (AMM) of heat, electricity, gas, water
- Objects tracking (navigation)

engineering

- Heating, ventilation, air conditioning, climate control (HVAC), "Smart" home / office / building
- Management of energy facilities: substations, outdoor (street) lighting, charging stations for electric transport
- Access control and security and fire safety, etc.

Pros (+):	Cons (-):			
 Time tested Can be deployed in a safe customer data center (except SaaS) Low start OPEX (for small systems) 	 License price (for many objects) No source code, difficult to change Some systems can be used only as SaaS (not possible for B2G/big business) SW vendor = future competitor 			

DEVELOPMENT ON CLOUD IOT PLATFORM

Main platform's features:

- Device registration
- Safe
 communications
- Specific DBs
- User rights mngt
- Data analytics
- Notification (SMS, push)
- Jobs (routines)

Pros (+):

- Low start expenses (free limits, grants)
- Scalable architecture
- High reliability (tested on million devices)
- Init. development could be quickly done by 3d party.

Cons (-):

- IoT platforms work in owner's data center (DC). Hard to build system in customer DC
- Major IoT platforms use DCs outside Russia (can't be used for B2G)
- Cost is higher vs. rental of virtual machines (for high N of devices)
- Hard to change to another platform (code difference).

SELF-DEVELOPMENT of UPPER LEVEL SYSTEM

SELECTION STRATEGY

TECHNOLOGY SELECTION STRATEGY

Q: what to use to make optimal system for your case?

A: Use the following steps:

- 1. Define system's parameters (next slide)
- 2. Choose connectivity techs (suitable for implementation) \rightarrow list 1
- 3. Choose upper level system types (suitable) \rightarrow list 2
- 4. Remove obvious outsiders from lists 1 & 2
- Make all possible pairs from lists 1 & 2 → Relevant solutions.
 Make vectors (CAPEX, OPEX, scalability, TB) forom every pair
- 6. Find optimal vector. Make your system on technologies corresponding to it
- 7. *If there are many equal objects, consider use of custom designed equipment

TECH REQUIREMENTS ANALYSIS

Connectivity requirements

Parameter	Units
Number (N) of IoT devices	
N of messages from one device	msg/day
Mean device message size	bytes
Min. connection speed from device	bit/sec
Battery powered devices required	Yes/No
Connected to operator's network (GSM, GPON, Ethernet)	Yes/No
Can use IoT provider's network	Yes/No
Max. distance from device to HUB/coordinator	km
Typeofbusiness(TB)company's strategy for IoT business	0 - End user 1 - Operator

Upper level requirements

Parameters	Units
N of users	
Scaling coefficient (SC) (realistic plan in 2 yrs.) 1 - no future expansion 100 - max. expansion	times
Sources code are necessary	Yes/No
alarm delivery time to user (max.)	min

engineering &telecom

ECONOMICAL PARAMETERS OF RELEVANT SOLUTIONS

For each relevant solution estimate economical parameters (calculated for initial N of devices):

 $X = \{X_1, X_2...X_6\}$

where x_1 - transport network cost, x_2 - upper-level system cost, x_3 -integration cost; x_4 -provider's infrastructure rent price; x_5 -rent price for using upper-level functions (data processing), x_6 - system maintenance cost.

And calculate CAPEX and OPEX:

CAPEX=x1+x2+x3 OPEX=x4+x5+x6

Form the vector of economical parameters for each solution:

 $\mathsf{P}_{i}{=}\{\mathsf{CAPEX},\,\mathsf{OPEX},\,\mathsf{SC},\,\mathsf{TB}\}$

ECONOMIC PARAMETERS OPTIMIZATION

Choose the best in economic terms solution. It can be formulated as follow optimization problem:

min (f(CAPEXi, OPEXi, SC, TB)), where i - index of i-th possible solution

How we can choose the function?

There are several reasonable variants of function definition. For example, you can target CAPEX minimization, OPEX minimization or cashflow with maximal flatness.

We propose to use the type of business parameter and scalability factor to define a weight of CAPEX and OPEX for particular application and business type:

min (CAPEXi/SCi + OPEXi*SCi + OPEXi*TBi))

REAL WORLD EXAMPLES

MONITORING OF SERVER ROOMS

Task:

- Server's power control, on/off
- Company with 3 offices with wired Internet
- 4 server rooms, 2 telecom cabinets
- Battery (U, I, T), env. (T, H), fire control
- E-Meter values (P, U, I)
- Users: 3 admins, 2 managers
- No expansion planned

Relevant solutions:

- 6 possible solutions
- Connectivity (all of Directly-connected IoT type):
 - 2G cell
 - o <mark>Ethernet</mark>
 - GPON
- Ready to use or cloud IoT upper level

Suggested solution (finalist): Ethernet IoT gateway + SNMP NMS

More about case: <u>www.synergy.msk.ru</u>

ELECTRICAL MONITORING IN OFFICE BUILDING

Task:

- Electricity consumption precise monitoring & prediction (AI)
- 100 e-meters grouped ~20 pcs in 5 metering cabinets
- 1 office complex;
- Intensive collection: 30 parameters (power, current, ...) every 2 sec.
- Big data volume to be stored (about 100Gb/month);
- 20 users;
- Plan to make market solution (operator's business)

Relevant solutions:

- 3 possible solutions
- Connectivity:
 - NB-IoT / operator's HUB
 - PLC / private HUB
 - Ethernet / directly-connected
- Self-developed upper level

Suggested solution: Ethernet/RS485 bridges + self-developed upper level

More about case: https://energy.ipu.ru/

MEGAPOLIS HEAT METERING SYSTEM

Task:

- Optimisation of city heat consumption and lowering citizen payments (most expensive part)
- 24.000+ buildings with data concentrators
- 30.000+ heat meters (managed by municipal company)
- 3.000+ users from major office, management comp., etc.
- Should work in city DC with 10+ 3d party systems

Relevant solutions:

- 10 possible solutions
- Connectivity:
 - o 2G cell
 - NB-IoT/LoRa
 - o Ethernet
 - GPON
- Ready to use or self-developed upper level

Suggested solution: LoRaWAN+self-developed upper level system.

More about case: <u>https://asupr.mos.ru/</u>

Engineering & Telecommunication Conference, November 25 – 26, 2020

Data concentr.

CASE STUDY SUMMARY

System description	Number of objects to be controlled and their type	N users	Optimal solution
Monitoring of the server rooms in the commercial company	6 rooms in 3 offices	5	Directly connected IoT (wired Ethernet), SNMP v.3 based NMS (Zabbix)
Monitoring of a car washes chain	10 car washes with 4 washing posts	5	Directly connected IoT (GSM gateways) System on cloud IoT platform (like AWS)
Office complex electricity monitoring system	100 power meters in office buildings	20	Private HUB connected IoT (RS-485 e-meters, Ethernet converters). Self-dev. system on ThingBoard, Postgres DB and integration layer.
Outdoor lighting controlling system in a large country side pansionat	100 street lighting poles with dimmable LED lamps	3	Operator's HUB connected IoT (LoRaWAN) Ready to use light management system / AMM
Megalopolis heat metering system (more than 10 roles, more than 10 integrations with other systems, strategic importance of data and management)	24K+ points (buildings) with different configuration	3K+	Directly connected IoT Self-dev. system, based on commercial and open source solutions Customized data concentrators

CUSTOM HW DEVELOPMENT OPTION

Equipment cost can be up to 80% of the project cost

Custom HW dev. can cross it's payback thanks to lower cost of:

- equipment
- installation and tuning work

Factors making custom HW's price lower:

- standard case (housing) or no case (just PCB)
- minimal number of blocks, boards, cables, connectors
- use of modern components: SoC, <u>proven</u> asian brands (2d level)

Together with equipment Customer will also:

- Develop own brand
- Have additional instrument for tenders (functionality, price)
- Open new business direction

Custom HW development is reasonable if usually if objects N>200

Strategy for selection of IoT management technology

- > Consists of **7 steps**, have to input 13 input parameters
- Considers 3 connectivity types: serverless, direct-, HUB-connected, 15 ph.I. technologies
- Considers 3 types of upper level SW types:
 - Boxed SW products like SCADA
 - Systems based on Cloud IoT platforms like AWS or Yandex.Cloud
 - o Own development which is justified only for government or very ambitious projects
- Generates vectors from all connectivity + upper level pairs, finds optimal
- > If there are many same objects, consider use of **custom designed equipment** to lower the costs

Points to be developed in the future:

- > Include new data transport types, reliability and redundancy
- Offer different optimizations for different business (operator/user with own/credit money, user willing to become operator, etc.)

> Make database for tariffs (operators, cloud services) and equipment cost

CONTACTS

SYNERGY TEAM resources:

<u>www.synergy.msk.ru</u> <u>https://habr.com/ru/company/synergy/</u> - blog <u>http://synergy.msk.ru/conhwd/</u> - contract HW development

ICS RAS resources:

https://energy.ipu.ru/ https://www.ipu.ru/

E-mails:

l.karpenko@synergy.msk.ru s.dushin@inbox.ru

THANK YOU